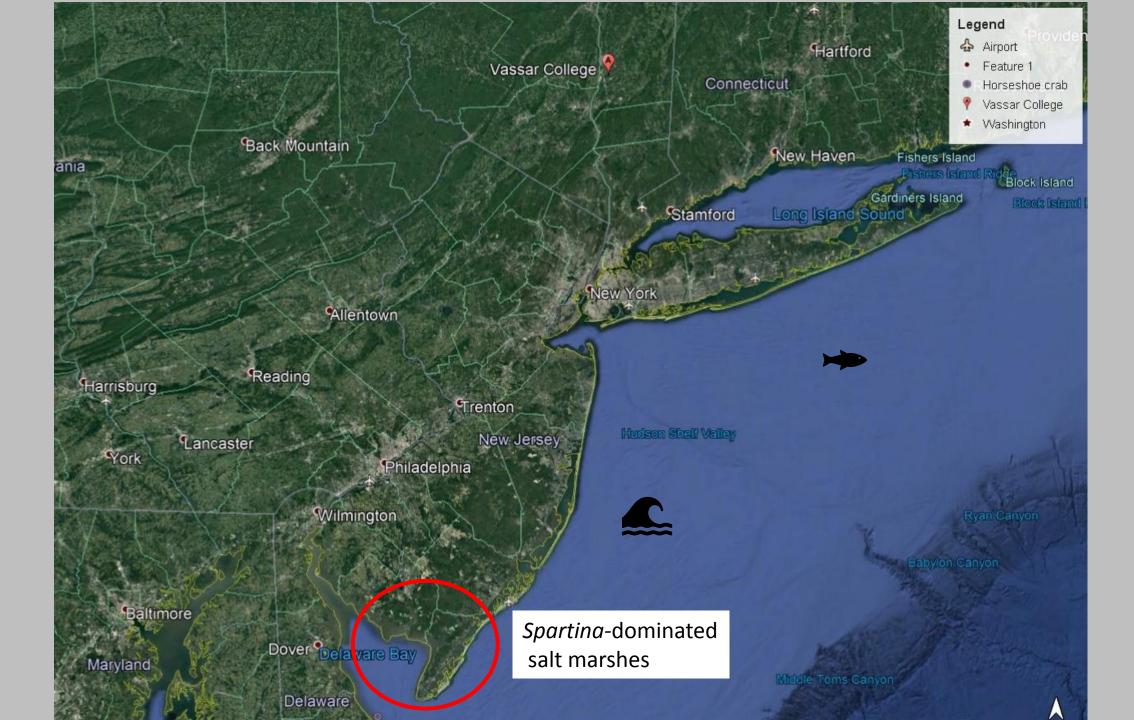
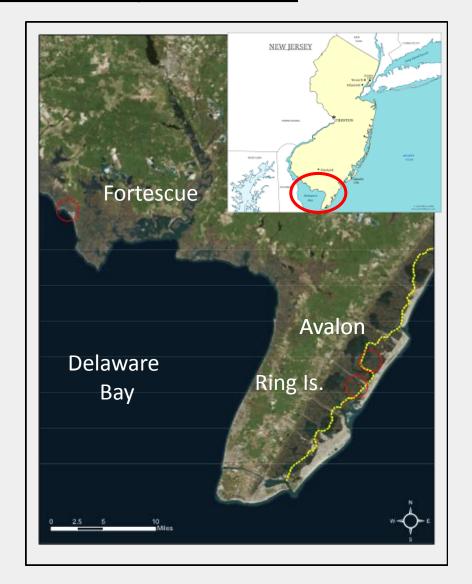
USING DREDGED MATERIAL TO ENHANCE NEW JERSEY SALT MARSHES

Joel A. Pecchioli and Metthea Yepsen
New Jersey Department of Environmental Protection
May 8, 2019

Project Team





NFWF Grant Overview and Objectives

- NFWF Hurricane Sandy <u>Coastal Resiliency</u>
 Competitive Grants Program (2014)
- Regional need for marsh enhancement and dredging
- Test dredged material beneficial use concept (ecological & economic benefits)
- Three "experimental" pilot projects in New Jersey – Ring Island, Avalon, & Fortescue

NJ Pilot Project Components & Conceptual Design Objectives

Project Site	Marsh Enhancement	Other Components
Ring Island (Sep 2014)	2 ~ 0.5-acre areas Thin Layer Placement (sand - 3 or 6 inches)	Shorebird Elevated Nesting Habitat (ENH)
Avalon (Dec 2014 – Jan 2015) (Nov 2015 – Feb 2016)	5 areas – 45 acres Fill degraded/expanding pools Overflow – TLP	Edge erosion/restoration considered - rejected
Fortescue (March 2016)	2 areas - 6.6 acres Increase elevation	Dune Restoration Beach Nourishment

Did not consider future sea-level rise

Site Assessment & Selection

Question #1: Is the marsh stressed?

Question #2: Can dredged material placement address the cause(s) of this stress?

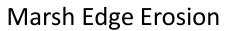
- site hydrology
- sediment accretion/erosion

- High-level desktop analyses
- Rapid on-the-ground assessment
- Detailed site characterization

? - Nearby dredging project

Degraded and **Expanding** Pools

- anoxic
- no biota
- undercut edges


"Stressed Marsh"

+

Elevation Deficit

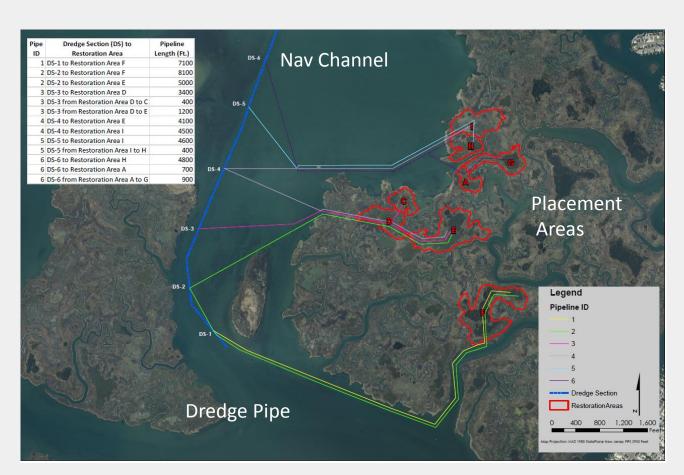
Reduced Vegetation Cover and Vigor

Placement Area Selection - Avalon Phase 2

Marsh Plain & Pool Characteristics

- Vegetation: % cover, height, vigor
- Elevation
- Biota use
- Pools: anoxic, no biota, undercut edges (vs. "healthy" pools)

Sediment Characteristics


- Channel data compared to
 - NJDEP Ecological Screening Criteria (sediment, water quality)
 - marsh surface data

<u>Dredging Project Design - Avalon</u>

- Specific channel sections matched with marsh enhancement areas
 - Contaminant concentrations
 - Grain size distribution
- Volume of dredged material needed in each area calculated
- Pipe layouts designed
 - Distance from marsh edge
 - Marsh topography

Lesson Learned: It is critical that the design and construction of the marsh enhancement project is closely coordinated with the dredging project.

Sediment Testing

Project Site	Navigation Channel	Marsh Surface
	Grain Size Distribution TOC Bulk Sediment Chemistry Elutriate	Grain Size Distribution TOC Bulk Sediment Chemistry
Ring Island (~1 acre)	1 core <mark>(96% sand)</mark> 6,000 CY	Not Conducted
Avalon (~60 acres)	19 cores/11 analytical 51,000 CY	71 samples/29 analytical Contaminant Issue
Fortescue (~20.5 acres)	8 cores/3 analytical 83,000 CY	33 samples/14 analytical Grain Size Issue

Marsh Enhancement Project Design

Target Ecological Elevations

- Biological benchmarks
- Max 4-6 inches dredged material
- ? Consider future sea level rise?

Target Dredged Material Placement Elevations

- Bulking factor (assumed 2x)
- Consolidation

Placement Area boundaries revised

- Natural topographic contours
- High flow drainage paths
- Dredged material volume

Containment needs determined

- Target Placement Elevation vs. existing elevation
- Available containment sizes/diameters

Project Construction

Pre-Placement

- Planning and pre-construction meetings
- Site prep: grade stakes, containment

Placement

- Hydraulic dredging & placement
- Hands-on, real-time **ADAPTIVE MANAGEMENT**
- Constant communication with dredger

Post-Placement

Inspection, clean-up, surveys

Post-Construction Monitoring Program

Formal Monitoring

- Vegetation
- Elevation/Topography
- Surface Water Levels
- Wildlife communities
 - Fish
 - Birds
 - Macroinvertebrates
 - Benthic infauna
- Sediment
- Wave Energy & Flood Modeling

Monthly Site Inspections

- Started in April 2016
- Real-time observations to identify significant issues and guide adaptive management
- Observations of:
 - Vegetation recovery/die-off
 - Containment
 - Dredged material
 - Planted material
 - Wildlife
- Fixed photo points

Lesson Learned: Qualitative monthly post-construction monitoring is very useful to adaptively manage the marsh enhancement project.

Post-Construction Adaptive Management

Vegetation Die-off Areas

Containment Removal

Invasive Species

Dredged Material Consolidation

Planting

Other Issues

- Regulatory State and federal (USACE)
- Dredged material management alts?
- Schedule Dredging "windows"
- Dredging contractors
- Cost: \$45 \$140 per cubic yard \$56,000 \$405,000 per acre
- Consider sea level rise?
 - Risk of action vs. no action
 - Temporal considerations
 - Adaptive capacity

Beneficial Use of Dredged Material to Enhance Salt Marsh Habitat in New Jersey

Part 1: Initial Lessons Learned

March 2019

Contact:

metthea.yepsen@dep.nj.gov

joel.pecchioli@dep.nj.gov

Thank You!